Latest Pubmed articles about Swine flu

Subscribe to Latest Pubmed articles about Swine flu feed Latest Pubmed articles about Swine flu
NCBI: db=pubmed; Term=swine flu
Updated: 4 days 31 min ago

Phylogenetic Analysis and Characterization of a Sporadic Isolate of Equine Influenza A H3N8 from an Unvaccinated Horse in 2015.

Wed, 01/17/2018 - 03:00
Related Articles

Phylogenetic Analysis and Characterization of a Sporadic Isolate of Equine Influenza A H3N8 from an Unvaccinated Horse in 2015.

Viruses. 2018 Jan 11;10(1):

Authors: Sreenivasan CC, Jandhyala SS, Luo S, Hause BM, Thomas M, Knudsen DEB, Leslie-Steen P, Clement T, Reedy SE, Chambers TM, Christopher-Hennings J, Nelson E, Wang D, Kaushik RS, Li F

Abstract
Equine influenza, caused by the H3N8 subtype, is a highly contagious respiratory disease affecting equid populations worldwide and has led to serious epidemics and transboundary pandemics. This study describes the phylogenetic characterization and replication kinetics of recently-isolated H3N8 virus from a nasal swab obtained from a sporadic case of natural infection in an unvaccinated horse from Montana, USA. The nasal swab tested positive for equine influenza by Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR). Further, the whole genome sequencing of the virus confirmed that it was the H3N8 subtype and was designated as A/equine/Montana/9564-1/2015 (H3N8). A BLASTn search revealed that the polymerase basic protein 1 (PB1), polymerase acidic (PA), hemagglutinin (HA), nucleoprotein (NP), and matrix (M) segments of this H3N8 isolate shared the highest percentage identity to A/equine/Tennessee/29A/2014 (H3N8) and the polymerase basic protein 2 (PB2), neuraminidase (NA), and non-structural protein (NS) segments to A/equine/Malaysia/M201/2015 (H3N8). Phylogenetic characterization of individual gene segments, using currently available H3N8 viral genomes, of both equine and canine origin, further established that A/equine/Montana/9564-1/2015 belonged to the Florida Clade 1 viruses. Interestingly, replication kinetics of this H3N8 virus, using airway derived primary cells from multiple species, such as equine, swine, bovine, and human lung epithelial cells, demonstrated appreciable titers, when compared to Madin-Darby canine kidney epithelial cells. These findings indicate the broad host spectrum of this virus isolate and suggest the potential for cross-species transmissibility.

PMID: 29324680 [PubMed - in process]

Categories: Articles

Molecular subtyping of European swine influenza viruses and scaling to high-throughput analysis.

Wed, 01/17/2018 - 03:00
Related Articles

Molecular subtyping of European swine influenza viruses and scaling to high-throughput analysis.

Virol J. 2018 Jan 10;15(1):7

Authors: Bonin E, Quéguiner S, Woudstra C, Gorin S, Barbier N, Harder TC, Fach P, Hervé S, Simon G

Abstract
BACKGROUND: Swine influenza is a respiratory infection of pigs that may have a significant economic impact in affected herds and pose a threat to the human population since swine influenza A viruses (swIAVs) are zoonotic pathogens. Due to the increasing genetic diversity of swIAVs and because novel reassortants or variants may become enzootic or have zoonotic implications, surveillance is strongly encouraged. Therefore, diagnostic tests and advanced technologies able to identify the circulating strains rapidly are critically important.
RESULTS: Several reverse transcription real-time PCR assays (RT-qPCRs) were developed to subtype European swIAVs in clinical samples previously identified as containing IAV genome. The RT-qPCRs aimed to discriminate HA genes of four H1 genetic lineages (H1av, H1hu, H1huΔ146-147, H1pdm) and one H3 lineage, and NA genes of two N1 lineages (N1, N1pdm) and one N2 lineage. After individual validation, each RT-qPCR was adapted to high-throughput analyses in parallel to the amplification of the IAV M gene (target for IAV detection) and the β-actin gene (as an internal control), in order to test the ten target genes simultaneously on a large number of clinical samples, using low volumes of reagents and RNA extracts.
CONCLUSION: The RT-qPCRs dedicated to IAV molecular subtyping enabled the identification of swIAVs from the four viral subtypes that are known to be enzootic in European pigs, i.e. H1avN1, H1huN2, H3N2 and H1N1pdm. They also made it possible to discriminate a new antigenic variant (H1huN2Δ146-147) among H1huN2 viruses, as well as reassortant viruses, such as H1huN1 or H1avN2 for example, and virus mixtures. These PCR techniques exhibited a gain in sensitivity as compared to end-point RT-PCRs, enabling the characterization of biological samples with low genetic loads, with considerable time saving. Adaptation to high-throughput analyses appeared effective, both in terms of specificity and sensitivity. This new development opens novel perspectives in diagnostic capacities that could be very useful for swIAV surveillance and large-scale epidemiological studies.

PMID: 29316958 [PubMed - in process]

Categories: Articles